This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Liquid Chromatography & Related Technologies

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597273

AUTOMATIC SELECTION OF MOBILE PHASES. II. TLC ON SILICA OF *TRANS*- AND *CIS*-2-PHENETHYL-3-(9-METHYLCARBAZOL-3-YL)-4-SUBSTITUTED ISOQUINOLINES

R. I. Koleva^a; M. D. Palamareva^b

^a Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, U.S.A. ^b Department of Chemistry, University of Sofia, Sofia, Bulgaria

Online publication date: 26 November 2002

To cite this Article Koleva, R. I. and Palamareva, M. D.(2002) 'AUTOMATIC SELECTION OF MOBILE PHASES. II. TLC ON SILICA OF *TRANS*- AND *CIS*-2-PHENETHYL-3-(9-METHYLCARBAZOL-3-YL)-4-SUBSTITUTED ISOQUINOLINES', Journal of Liquid Chromatography & Related Technologies, 25: 20, 3131 – 3140 To link to this Article: DOI: 10.1081/ILC-120016213

URL: http://dx.doi.org/10.1081/JLC-120016213

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

JOURNAL OF LIQUID CHROMATOGRAPHY & RELATED TECHNOLOGIES Vol. 25, No. 20, pp. 3131–3140, 2002

AUTOMATIC SELECTION OF MOBILE PHASES. II. TLC ON SILICA OF *TRANS*- AND *CIS*-2-PHENETHYL-3-(9-METHYLCARBAZOL-3-YL)-4-SUBSTITUTED ISOQUINOLINES

R. I. Koleva* and M. D. Palamareva[†]

University of Sofia, Department of Chemistry, 1 James Bouchier Avenue, Sofia 1164, Bulgaria

ABSTRACT

Thin-layer chromatography (TLC) on silica of the title compounds was done. The automatic selection of mobile phase strength, ε was performed by the LSChrom software, incorporating the Snyder theory and data about the adsorption properties of usual structural elements or functional groups. This data enabled us to describe any sample structure necessary to do further calculations. The values of ε recommended were small ranges around 0.338 for compounds **1–12** and 0.379 for tetrahydroisoquinolines **13–25**. Using the same software, twelve mobile phases having such values of ε were selected. The experimental R_F values were, in general, in the favorable range of 0.01–0.95, showing proper automatic prediction both of ε and the concrete mobile phases for TLC of compounds **1–25**, most of them having three heterocyclic rings in their structure.

3131

DOI: 10.1081/JLC-120016213 Copyright © 2002 by Marcel Dekker, Inc. 1082-6076 (Print); 1520-572X (Online) www.dekker.com

^{*}Present address: Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA.

[†]Corresponding author. E-mail: mpalamareva@chem.uni.sofia.bg

3132

KOLEVA AND PALAMAREVA

INTRODUCTION

Precise prediction of retention R_M or k as a function of sample structure in normal-phase liquid–solid chromatography (TLC or HPLC), is not yet obtained. The Snyder theory^[1–3] gives a first-level approximation of this relationship:

$$R_M = \log k = R_{M(\text{shift})} + \alpha'(S_X - \varepsilon A_X) \tag{1}$$

or

$$R_{M} = \log k = R_{M(\text{shift})} + \alpha' \left(\sum Q_{i}^{o} - \varepsilon \sum a_{i} \right)$$
(1*a*)

where $R_{M(\text{shift})}$ and α' characterize the adsorption properties of the stationary phase, S_X and A_X are respective adsorption energy and molecular area under adsorption of the sample compound, and ε is the adsorption energy of mobile phase per unit of its area under adsorption. S_X and A_X are found by summation of adsorption energy Q_i^o and area under adsorption a_i of any structural element, *i*, respectively.

Equation (1a) and the corresponding data for Q_i^o and a_i were incorporated in the last version^[4] of the LSChrom software. Originally,^[5] this software offered a possibility to find, by the Snyder theory, ε of a given mobile phase, or to select a mobile phase with a given value of ε on the basis of iterative procedures.

The last version of LSChrom has been recently applied^[6] to find automatically, without any preliminary experiments, suitable mobile phases for TLC on silica of compounds with complex structure. One can argue that this successful application of both the Snyder theory and LSChrom is occasional. The present paper reports another case of their application for automatic selection, first of ε and then of concrete mobile phases for TLC of compounds 1–25, most of them containing three heterocyclic rings in their structure.

EXPERIMENTAL

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

AUTOMATIC SELECTION OF MOBILE PHASES. II

Compounds 1–25 were synthesized in analogy to Ref. [7]. Their structure (see Tables 2 and 3) and configuration were elucidated by NMR and mass spectra. Thin-layer chromatography was performed on pre-coated TLC silica 60

3133

 GF_{254} (Merck, Germany) plates similarly to Ref. [6].

The computer program used was LSChrom Ver. 2.1 for Windows.^[4]

RESULTS AND DISCUSSION

The compounds studied were the diastereoisomers 1 (cis) and 2 (trans) being chromatographed both with *trans*-tetrahydroisoquinolines 3-12 and *trans*-dihydroisoquinolinones 13-25. The trans-isomer 2 was a parent compound for preparation of compounds 3-25.

Automatic Selection of Mobile Phases

The automatic selection of mobile phases was done in minutes by different modes of the LSChrom software.

Similarly to Ref. [6], silica $[R_{M(\text{shift})} = -1.76 \text{ and } \alpha' = 0.57]$ was selected from a list offered by the software. The proper characterization of the adsorbent that will be used is of importance in order to receive good results.

The adsorption properties of any compound studied were found by calculation of S_X and A_X inputting data about the type and number of structural elements (functional groups) participating in its structure. For instance, the following groups expressed the structure of compound 18:

- 30 olefinic carbon atoms (C=)
- 1 aromatic methyl group (Ar–CH₃)
- 9 aliphatic methylene groups (Al–CH₂–Al)
- 3 tertiary aliphatic nitrogen atoms [Al-N (tert)]
- 1 aliphatic amide group (Al–CONH₂) and
- 1 aromatic methoxy group (Ar–OCH₃).

It is worth noting that there is no data about Q_i^o and a_i for a CH-group, and the presence of two such groups in compound **18** was taken into account, approximately by two methylene groups. Thus, the total number of the methylene groups became 9. The data for all other compounds are available on request.

The computer calculated values of S_X and A_X of compound **18** were 35.99 and 85.30, respectively.

In another mode, LSChrom calculated R_M of any compound by Eq. (1a), using the values of $R_{M(\text{shift})}$, α' , S_X , and A_X mentioned above, and ascribing to ε successive values with a given step. The interconversion of R_F and R_M is done by

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

3134

KOLEVA AND PALAMAREVA

a well-known equation (see Ref. [6]). In the same mode, LSChrom made an analysis of the retention of the compounds studied and predicted a recommended value of ε ($\varepsilon_{recommended}$) of the suitable mobile phases for their TLC separation on silica selected. This value is found on the basis of best separation, i.e., maximum value of resolution R_s , and favourable retention ($0 < R_F < 1$) of the compounds. The value of $\varepsilon_{recommended}$ was 0.338 for compounds 1–12 and 0.379 for dihydroisoquinolinones 13–25. Small ranges around these values of ε belong to the recommended range of ε comprising the relevant greater values of R_s , including the maximum value. Figure 1 illustrates the retention analysis and prediction of $\varepsilon_{recommended}$ for compounds 1–12. For instance, the retention predicted for compound 18 was $R_M = 0.31$ and $R_F = 0.33$ when $\varepsilon = 0.379$.

Selection of concrete mobile phases having $\varepsilon_{\text{recommended}}$ or ε in the recommended range, was performed in another mode where the desired value of ε was input. After relevant calculations, LSChrom showed a list of mobile phases with this value of ε . We selected from such lists (see Fig. 2), 12 mobile phases that are summarized in Table 1 together with their values of ε , localization *m*, and polarity *P*'. The last two parameters tune the mobile phase strength ε (see Refs. [6, 8]).

Thin-Layer Chromatography of Compounds 1–25 with the Automatically Selected Mobile Phases of Table 1

Tables 2 and 3 show the experimental R_F values of compounds 1–25, obtained by their TLC on silica with the automatically selected mobile phases given in Table 1. The R_F values of the strong base *N*-methyl derivatives 6 and 16 are zero with some mobile phases. It is known that strong bases require a small quantity of ammonia in the mobile phase (see Ref. [6] for instance). In all other cases of 155 measurements, R_F is in the favorable range of 0.01–0.95. That result shows, unequivocally, that the Snyder theory and LSChrom predicted, accurately, the mobile phases that are suitable for TLC of the compounds studied, on the basis of their structure.

We did not make a comparison between calculated and experimental values of R_F , since good agreement is not generally expected when Eq. (1a) is used.

It is worth noting, that there is a variation in R_F when mobile phases with equal ε , but different *m* and *P*['], are used. For instance, R_F of compound **18** varied from 0.06 to 0.52 with mobile phases 7–10 having $\varepsilon = 0.379$. This tuning effect of *m* and *P*['] is of importance in order to find an optimum mobile phase for separation of given compounds. The strategy for solving this problem is to use mobile phases with equal or close ε , but with different *m* and *P*['] (see Refs. [6, 8]). In fact, we were not interested to find an optimum mobile phase for separation of

3135

AUTOMATIC SELECTION OF MOBILE PHASES. II

ID+ Solvents Solvents Component Prive Y 46 6 9 6 9 6 1.135 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.45 <th>] Eile Data Files Edit Calcula</th> <th>ation 0</th> <th>ptions</th> <th>Window</th> <th>Help</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>- 19 -</th> <th>N</th>] Eile Data Files Edit Calcula	ation 0	ptions	Window	Help						- 19 -	N
46 64 0.400 0.42 1.135 0.43 45 64 0.100 2.223 0.41 0.238 0.100 2.223 0.41 52 0.0100 0.238 0.0100 2.223 0.71 0.238 0.717 0.238 0.717 0.238 0.717 0.738 0.717 0.738 0.717 0.738 0.717 0.738 0.717 0.738 0.717 0.738 0.717 0.738 0.717 0.757 0.717 0.758 0.717 0.757 0.717 0.757 0.738 0.717 0.757 0.757 0.738 0.738 0.737 0.757 0.757 0.757 0.757 0.757 0.753 0.761 0.757 0.757 0.753 0.761 0.751 0.751 0.751 0.751 0.751 0.753 0.761 0.751	D*		So	Ivents				\$ *	æ	>'q	* 4	
45 cyclotherane-directore 0.338 0.100 2.223 0.41 52 cyclotherane-ectore 0.338 0.901 0.666 0.717 0.565 50 cyclotherane-ectore 0.338 0.717 0.565 0.717 0.565 43 cyclotherane-ectore 0.338 0.714 0.717 0.565 0.717 0.565 43 cyclotherane-ectore 0.338 0.566 1.147 0.717 0.56 0.767 43 cyclotherane-ectore 0.338 0.140 3.428 0.764 0.565 43 cyclotherane-ectore 0.338 0.136 0.713 0.564 0.565 43 cyclotherane-ectore 0.338 0.764 0.566 0.764 0.565 51 cyclotherane-tet-butbyinetbyietbyietbyietbyietbyietbyietbyietbyi	46 cyclohexane-diethyl ethe	*						0.33	8 0.642	1.135	0.495	4
52 cydohexare-actore 0.338 0.001 0.666 0.70 50 cydohexare-actore 0.338 0.711 0.56 43 cydohexare-actore 0.338 0.741 0.747 0.56 44 cydohexare-rated 0.338 0.140 3.428 0.76 43 cydohexare-ratelyare 0.338 0.140 3.428 0.76 44 cydohexare-ratelyare 0.338 0.140 3.428 0.76 47 cydohexare-ratelyare 0.338 0.140 3.428 0.76 47 cydohexare-ratelyare 0.338 0.140 3.428 0.76 51 cydohexare-ratelyare 0.338 0.782 0.76 52 cydohexare-ratelyare 0.338 21.577 0.531 0.366 51 cydohexare 73.911 0.682 0.300 Adsorbent 51 cydohexare 73.911 0.682 0.300 0.373 51 cydohexare 73.91 0.682 0.300 0.373 51 cydohexare 73.91 0.691 64estred 0.373 51 cydohexare 73.91 0.691 64estred 0.373 51	45 cyclohexane-diisopropyl e	ether						0.33	8 0.100	2.223	0.410	
50 cydohexare-dicxare 0.717 0.538 0.717 0.538 43 cydohexare-tivja cetate 0.338 0.565 1.147 0.71 44 cydohexare-tivja cetate 0.338 0.738 0.749 0.78 53 cydohexare-tivja cetate 0.338 0.740 0.744 0.78 53 cydohexare-tivjaretivja ether 0.338 0.782 0.65 0.65 47 cydohexare-tetr-buthymethy ether 0.338 0.782 0.67 0.65 56 cydohexare-tetr-buthymethy ether 0.338 0.782 0.67 0.65 56 cydohexare-tetr-buthymethy ether 0.338 1.33 0.464 0.73 56 cydohexare-tetrafydofuran 25.039 0.318 21.577 0.910 6 0.338 6 cydohexare 73.911 0.682 0.781 0.760 0.695 0.760 70 cydohexare 73.911 0.682 0.7610 2.760 0.338 6 cydohexare 73.911 0.691 6 6 0.760 6 <td< td=""><td>52 cyclohexane-acetone</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.33</td><td>8 0.901</td><td>0.666</td><td>0.705</td><td></td></td<>	52 cyclohexane-acetone							0.33	8 0.901	0.666	0.705	
43 cyclohexare-ethyl acetate 0.338 0.140 3.428 0.733 44 cyclohexare-isopropand 0.338 0.140 3.428 0.366 43 cyclohexare-isopropand 0.338 0.782 0.67 0.67 47 cyclohexare-ethylmethylene chloride 0.338 0.782 0.67 0.67 47 cyclohexare-ethylmethylene chloride 0.338 0.782 0.67 0.67 48 cyclohexare-ethydrofuran 0.338 0.782 0.67 0.67 51 cyclohexare-etert-buttylinethyl ether 0.338 1.343 0.464 0.73 51 cyclohexare 73.911 0.682 0.338 1.464 0.73 51 cyclohexare 73.911 0.682 0.338 1.464 0.73 6/clohexare 73.911 0.682 0.338 1.464 0.73 6/clohexare 73.911 0.692 6.646 0.673 0.673 6/clohexare 73.911 0.692 6.646 0.338 1.646 0.733 6/clohexare 73.911 0.	50 cyclohexane-díoxane							0.33	00	0.717	0.959	1
44 cyclohexare-1.2-dichloroethare 0.338 0.140 3.428 0.38 53 cyclohexare-rispropandi 0.338 0.054 0.56 0.56 47 cyclohexare-rispropandi 0.338 0.782 0.67 0.67 47 cyclohexare-rispropandi 0.338 0.782 0.67 0.67 56 cyclohexare-retrahoromethare 0.338 0.782 0.67 0.67 56 cyclohexare-retrahoromethare 0.338 0.782 0.67 0.67 51 cyclohexare-sectorithic 0.338 1.343 0.464 0.73 51 cyclohexare 73.911 0.682 0.73 0.695 6//clohexare 73.911 0.682 0.338 meate 0.338 6//clohexare 73.911 0.692 6.030 0.338 meate 0.338 6//clohexare 73.911 0.692 7.660 0.936 7.666 0.936 6//clohexare 73.911 0.692 7.610 7.660 0.938 1.661 0.700 6//clohexare 73.910	49 cyclohexane—ethyl acetat	te						0.33	8 0.585	1.147	0.715	
• 53 cyclohexane—isopropand 0.338 0.054 0.56 • 47 cyclohexane—iethylene choride 0.338 0.782 0.67 • 7 cyclohexane—tet - ehdromethane 0.338 0.782 0.67 • 6 cyclohexane—tet advidrationan 0.338 0.782 0.67 • 7 cyclohexane—tet advidrationan 0.338 0.782 0.67 • 7 cyclohexane—tet advidrationan 0.338 0.333 0.464 0.733 • 7 cyclohexane 73.911 0.682 0.738 0.333 0.464 0.733 • 7 cyclohexane 73.911 0.682 0.338 7.464 0.733 • 7 cyclohexane 73.911 0.682 0.338 0.745 0.338 • 7 cyclohexane 73.911 0.682 0.338 0.745 0.338 • 1 cyclohexane 73.911 0.682 0.338 mcaic 0.973 • 1 cyclohexane 73.918 21.577 0.910 7.645 0.338 • 1 cyclohexane 7.910 7.645 0.338 mcaic 0.973 • 1 cyclohexane 7.910 7.645 0.903 0.973 • 1 cyclohexane 1.577 0.910 7.645 0.973 • 1 cyclohexane 1.577 0.910 <td< td=""><td>44 cyclohexane-1,2-dichloro</td><td>bethane</td><td></td><td></td><td></td><td></td><td></td><td>0.33</td><td>8 0.140</td><td>3.428</td><td>0.782</td><td></td></td<>	44 cyclohexane-1,2-dichloro	bethane						0.33	8 0.140	3.428	0.782	
43 cyclohexane-methylene choride 0.338 0.782 0.67 47 cyclohexane-tetr-buthylmethyl ether 0.338 0.782 0.67 36 cyclohexane-tetr-buthylmethyl ether 0.338 0.973 0.896 0.781 56 cyclohexane-tetr-abydrofuran 0.338 1.343 0.464 0.738 51 cyclohexane-actornthile 0.338 1.343 0.464 0.738 51 cyclohexane 73 01 0.682 0.338 1.464 0.733 51 cyclohexane 73 01 0.682 0.318 21.577 0.910 26.464 0.338 cyclohexane 73 21.577 0.910 26.464 0.338 cyclohexane 25.020 0.318 21.577 0.910 26.464 0.973 cyclohexane 25.038 <td>53 cyclohexane-isopropanol</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.33</td> <td>8</td> <td>0.054</td> <td>0.960</td> <td></td>	53 cyclohexane-isopropanol							0.33	8	0.054	0.960	
47 oldohexare-tert-buthylnether 0.338 0.782 0.67 36 oldohexare-tert-buthylnether 0.338 0.973 0.896 0.78 36 oldohexare-tert-abldromane 48 oldohexare-tert-abldromane 0.338 0.973 0.895 0.78 51 oldohexare-cetrarhife 0.318 21.577 0.910 Adsorbent 510.464 0.338 cyclohexare 73.911 0.682 0.318 21.577 0.910 Edestred 0.338 cyclohexare 73.911 0.682 0.318 21.577 0.910 Edestred 0.338 cyclohexare 73.911 0.682 0.318 21.577 0.910 Edestred 0.338 tetrahydrofuran 25.089 0.318 21.577 0.910 Edestred 0.373 full MoPhase I.50HAILM I.5 Edestred 0.338 Moeleccccccccccccccccccccccccccccccccccc	43 cyclohexane-methylene cl	shloride										
36 cyclohevane-tetrachloromethane 0.338 0.973 0.896 0.73 48 cyclohevane-tetrachloromethane 0.338 1.343 0.464 0.73 51 oydohevane-acetornitrile 0.338 1.343 0.464 0.73 Solvent Name %i Ni Ki 0 Adsorbent Nalue Cyclohevane 73 0.318 21.577 0.910 Edestred 0.338 Cyclohevane 73 0.318 21.577 0.910 Edestred 0.373 Cyclohevane 73 0.318 21.577 0.910 Edestred 0.373 Cyclohevane 73 21.577 0.910 Edestred 0.373 Cyclohevane 26.069 0.318 21.577 0.910 Edestred 0.973 Prevalue 26.069 0.318 21.577 0.910 Edestred 0.973 Prevalue 26.069 0.318 21.577 0.910 Edestred 0.973 Prevalue 1.577 0.910 Edestred 0.973 Edestred 0.973 <tr< td=""><td>47 cyclohexane-tertbuthyli</td><td>Imethyl eth</td><td>er</td><td></td><td></td><td></td><td></td><td>0.33</td><td>8 0.782</td><td></td><td>0.675</td><td></td></tr<>	47 cyclohexane-tertbuthyli	Imethyl eth	er					0.33	8 0.782		0.675	
48 cyclohevare-tetrahydrofuran 0.338 0.973 0.895 0.73 51 oydohevare-actoritrile 0.338 1.343 0.464 0.73 Solvent Name %i Ni Ki 0 0 0.338 1.343 0.464 0.73 Solvent Name %i Ni Ki 0 0 Adsorbent Shlue 0.338 cyclohevane 73 0 318 21<577	36 cyclohexane-tetrachloro	methane										
51 cycloheware-acetoritrile 0.338 1.343 0.464 0.73 Solvent Name %i Ni Ki Øi Perameter Value Cycloheware 73: 911 0.682 0.030 Adsorbent Silica Cycloheware 73: 911 0.682 0.0318 21: 577 0.910 Edestred 0.338 tetrahydrofuran 26: 069 0.318 21: 577 0.910 Edestred 0.338 tetrahydrofuran 26: 069 0.318 21: 577 0.910 Edestred 0.338 fett MoPhase [15:0HRULSM] [16:at [17] [16:at 5.000 Compound Retention MobilePhase Search MobilePhase Calc [16:at [16:at [16:at	48 cyclohexane-tetrahydrofi	uran						0.33	8 0.973	0.896	0.727	
Solvent Name %i Ni Ki 6i Cyclohexane 73.311 0.682 0.090 Adsorbent Silica Cyclohexane 73.311 0.682 0.090 Adsorbent Silica tetrahydrofuran 26.069 0.318 21.577 0.910 Edesired 0.338 mcatc 0.318 21.577 0.910 Edesired 0.338 mcatc 0.318 21.577 0.910 Edesired 0.338 mcatc 0.318 21.577 0.910 Edesired 0.973 mcatc 0.910 Edit	51 cyclohexane-acetonitrile							0.33	8 1.343	0.464	0.738	+
cyclohexane 73.911 0.682 0.090 Adsorbent Silica tetrahydrofuran 25.089 0.318 21.577 0.910 Edesired 0.338 tetrahydrofuran 25.089 0.318 21.577 0.910 Edesired 0.338 mcatc 0.910 Pricatc 0.973 Pricatc 0.973 mcatc 0.510 Pricatc 0.973 Pricatc 0.973 mcatc 0.910 Pricatc 0.976 Pricatc 0.973 mcatc 0.500 Pricatc 0.976 Pricatc 0.973 mcatc 0.500 Pricatc 5.000 Pricatc 5.000 mcatc Unstate Edit Private Total 1 Pricatc 5.000	Solvent Name %		ź		Y.	ê;		Paramete		Value		1
tetrahydrofuran 26.069 0.318 21.577 0.910 Edesired 0.338 mcatc 0.973 mcatc 0.973 mcatc 0.973 mcatc 0.318 21.577 0.910 mcatc 0.973 mcatc 0.973 mcatc 0.973 mcatc 0.973 mcatc 0.316 mcatc 0.973 mcatc 0.973 mcatc 1.504 1.504 1.500 1.500 1.500 mcatc Lompound Retention MobilePhase Search MobilePhase Calc MobilePhase Results 1.500	cyclohexane 73.5	911	0.682			0.090	1	Adsorbe	nt	Silice		4
mcat 0.973 P ¹ calc 0.966 P ² calc 0.966 Total Total	tetrahydrofuran 26.(680	0.318	21	.577	0.910	-	Edesired		0.33	8	
P'calc 0.896 ñcalc 5.000 "D+D MoPhase L5CHRUMLSM Edit T Compound Retention MobilePhase Search MobilePhase Calc MobilePhase Results 15:00 15:00 15:00 15:00 16:01 17:01 16:01 17:01 16:01 17:01 16:01 17:01 16:01 17:01 16:01 17:01 16:01 17:01 16:01 17:01 16:01 17:01 16:01 17:01 16:01 17:01 16:01 17:01 16:01 16:01							7	mcalc		0.97	3	
「Treate 5.000 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一								P'calc		0.89	98	0
・① MoPhase 「LSCHROMLSM 【 こ Edit 【 ご Vision 】 [① こ Calculate 】 [①] こ Calculate 】 [①] こ Compound Retention > MobilePhase Search > MobilePhase Calc > MobilePhase Results > 16:09 から							•	R calc		5.00	8	+
Compound Retention MobilePhase Search (MobilePhase Calc (MobilePhase Results / 16:09 AC	CI-D-D-MoPhase	SM		Edit	N [N]	ision			Calcula	e l	ø	1
9/e 50.9L	Compound Retention	MobilePI	hase Se	arch M	obilePhas	e Calc X M	(obilePhas	e Result	10			-
						R R W N				16:09	400	-

3136

N

P

KOLEVA AND PALAMAREVA

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

AUTOMATIC SELECTION OF MOBILE PHASES. II

Table 1. Mobile Phases Recommended by LSChrom for TLC on Silica of All Compounds Studied

No.	Mobile Phase	Composition	3	m	$P^{'}$
1	Cyclohexane– tetrahydrofuran	73.911:26.089	0.338	0.97	0.90
2	Hexane-toluene-tret butylmethyl ether	66.829:10.000: 23.171	0.338	0.76	—
3	Diisopropyl ether- dichloromethane	85.590:14.410	0.338	0.09	2.50
4	Heptane-ethyl acetate	75.273:24.727	0.338	0.59	1.24
5	Hexane-ethyl acetate	76.130:23.870	0.326	0.59	1.13
6	Hexane-ethyl acetate	70.539:29.461	0.346	0.59	1.37
7	Hexane-acetone	75.117:24.883	0.379	0.93	1.34
8	Toluene-acetonitrile	86.538:13.462	0.379	1.03	2.86
9	Cyclohexane– isopropanol	87.326:12.674	0.379		0.32
10	Hexane-ethyl acetate	59.510:40.490	0.379	0.59	1.84
11	Hexane-ethyl acetate	62.770:37.230	0.370	0.59	1.70
12	Hexane-ethyl acetate	55.231:44.769	0.390	0.59	2.03

the compounds studied, since they are not obtained in a common reaction mixture. Our main goal was to find only suitable mobile phases, i.e., mobile phases that result in retention in the favorable range of $0 < R_F < 1$.

CONCLUSIONS

The present application of the Snyder theory and LSChrom software is successful in automatic prediction of 12 mobile phases suitable for TLC of the complex heterocyclic compounds 1-25 on silica $60F_{254}$ (Merck, Germany).

The prediction involves: a) prediction of recommended value of ε ($\varepsilon_{\text{recommended}}$) of mobile phases that are suitable for TLC, of the compounds studied on the basis of their structure and b) prediction of concrete mobile phases having $\varepsilon = \varepsilon_{\text{recommended}}$.

The success of the present application is also due to the proper characterization of the adsorbent used, with the relevant values of $R_{M(\text{shift})}$ (-1.76) and α' (0.57) being previously derived.^[6]

The software, LSChrom,^[4] enables any user, even though familiar with the Snyder theory, to apply it for an automatic selection of mobile phases for normal-

3138

KOLEVA AND PALAMAREVA

Compound		R	F for a	Given	Mobi	le Pha	se	
R Z	No.		1	2	3	4	5	6
		Е т Р'	0.338 0.97 0.90	0.338 0.76 -	0.338 0.09 2.52	0.338 0.59 1.24	0.326 0.59 1.13	0.346 0.59 1.37
cis CH ₃ OOC-(Z=O)	1		0.22	0.11	0.67	0.24	0.20	0.35
trans CH ₃ OOC-(Z=O)	2		0.20	0.09	0.65	0.23	0.19	0.33
trans (Z=2H)								
HO-CH2-	3		0.24	0.09	0.59	0.23	0.21	0.34
NCH ₂ .	4		0.08	0.02	0.04	0.03	0.03	0.03
NCH ₂ -	5		0.20	0.05	0.09	0.06	0.05	0.09
N NCH₂-	6		0.02	0	0.02	0.01	0	0.01
NCH2.	7		0.62	0.36	0.92	0.56	0.51	0.68
	8		0.47	0.16	0.69	0.33	0.32	0.48
F F F	9		0.66	0.43	0.95	0.61	0.55	0.73
	10		0.66	0.45	0.95	0.63	0.57	0.75
	11		0.61	0.33	0.92	0.54	0.49	0.68
NCH ₂	12		0.51	0.21	0.71	0.41	0.38	0.42

Table 2. Experimental R_F Values of Compounds 1–12 with Computer Selected Mobile Phases 1–6

AUTOMATIC SELECTION OF MOBILE PHASES. II

3139

Table 3. Experimental R_F Values of Compounds 1, 2 and 13–25 with Computer Selected Mobile Phases 7–12

No						-
INU.	7	8	9	10	11	12
E m P	0.379 0.93 1.34	0.379 1.03 2.86	0.379	0.379 0.59 1.84	0.370 0.59 1.70	0.390 0.59 2.03
1	0.07	0.40	0.36	0.59	0.53	0.76
2	0.05	0.38	0.36	0.58	0.50	0.73
13	0.02	0.21	0.28	0.27	0.23	0.46
14	0.06	0.10	0.29	0.05	0.05	0.07
15	0.12	0.30	0.41	0.46	0.43	0.63
16	0	0	0.04	0	0	0
17	0.08	0.41	0.42	0.64	0.62	0.84
18	0.06	0.35	0.39	0.52	0.49	0.74
19	0.08	0.47	0.42	0.66	0.64	0.86
20	0.08	0.48	0.42	0.66	0.63	0.91
21	0.07	0.42	0.40	0.61	0.59	0.83
22	0.07	0.30	0.35	0.43	0.42	0.65
23	0.11	0.36	0.40	0.62	0.59	0.86
	1 2 13 14 15 16 17 18 19 20 21 22 23	<i>€</i> 0.379 <i>m</i> 0.93 <i>P'</i> 1.34 1 0.07 2 0.05 13 0.02 14 0.06 15 0.12 16 0 17 0.08 18 0.06 19 0.08 20 0.08 21 0.07 22 0.07 23 0.11	ϵ 0.379 0.379 m 0.93 1.03 P' 1.34 2.86 1 0.07 0.40 2 0.05 0.38 13 0.02 0.21 14 0.06 0.10 15 0.12 0.30 16 0 0 17 0.08 0.41 18 0.06 0.35 19 0.08 0.47 20 0.08 0.48 21 0.07 0.42 22 0.07 0.30	ϵ 0.379 0.379 0.379 m 0.93 1.03 - P' 1.34 2.86 0.32 1 0.07 0.40 0.36 2 0.05 0.38 0.36 13 0.02 0.21 0.28 14 0.06 0.10 0.29 15 0.12 0.30 0.41 16 0 0 0.04 17 0.08 0.41 0.42 18 0.06 0.35 0.39 19 0.08 0.47 0.42 20 0.08 0.48 0.42 21 0.07 0.42 0.40 22 0.07 0.30 0.35 23 0.11 0.36 0.40	\$\vert\$ 0.379 0.379 0.379 0.379 0.379 \$\vert\$ 0.93 1.03 - 0.59 \$\vert\$ 1.34 2.86 0.32 1.84 1 0.07 0.40 0.36 0.59 2 0.05 0.38 0.36 0.59 2 0.05 0.38 0.36 0.59 2 0.05 0.38 0.36 0.59 2 0.05 0.38 0.36 0.59 2 0.05 0.38 0.36 0.59 1 0.07 0.40 0.36 0.59 14 0.06 0.10 0.29 0.05 15 0.12 0.30 0.41 0.42 0.64 16 0 0 0 0.42 0.64 18 0.06 0.35 0.39 0.52 19 0.08 0.47 0.42 0.66 21 0.07 0.42 0.40 0.61 </td <td>\$\vert\$ 0.379 0.59 \$\vert\$ \$\ve</td>	\$\vert\$ 0.379 0.59 \$\vert\$ \$\ve

3140

KOLEVA AND PALAMAREVA

	Table 3.	Con	tinued					
S NCH ₂ -	24	0.10	0.46	0.43	0.71	0.67	0.89	
N ^A N ≈∕ ^{NCH} 2 ⁻	25	0.01	• 0.06	0.15	0.06	0.05	0.13	

phase TLC and HPLC of non-ionic compounds whose structure can be expressed by the ones available in the software functional groups.

REFERENCES

- Snyder, L.R. Principles of Adsorption Chromatography; Marcel Dekker, Inc.: New York, 1968.
- 2. Snyder, L.R.; Kirkland, J.J. Introduction to Modern Liquid Chromatography, 2nd Ed.; Wiley-Interscience: New York, 1979.
- Snyder, L.R. In *High-Performance Liquid Chromatography*; Horváth, C.S., Ed.; Academic Press: New York, 1983; Vol. 3, 157–223.
- 4. Palamarev, Ch.E.; Palamareva, M.D. *LSChrom, Ver. 2.1, Demo Version*, 1999; http://www.members.tripod.com/lschrom
- 5. Palamareva, M.D.; Palamarev, H.E. J. Chromatogr. 1989, 477, 235-248.
- Palamareva, M.D.; Koleva, R.I.; Kozekov, I.D. J. Liq. Chromatogr. & Rel. Technol. 2001, 24, 1411–1424.
- Kozekov, I.D.; Koleva, R.I.; Palamareva, M.D. J. Heterocycl. Chem. 2002, 39, 229–236.
- 8. Palamareva, M.D.; Kozekov, I.D. J. Liq. Chromatogr. 1996, 19, 1483-1498.

Received June 12, 2002 Accepted July 18, 2002 Manuscript 5892